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We consider resistor networks, which are lattices with bonds represented by conductors and some of the
bonds removed. It is known that effective medium theories predict that the effective conductivity of such
networks is a linear function of the number of bonds present above the percolation threshold, but exact results
for completely random networks deviate from linearity. We show that if instead we take a randomly chosen tree
spanning the lattice and then start adding bonds to it at random, the conductivity changes linearly with the
number of added bonds and coincides with the effective medium result for a given bond concentration. We also
make comparisons with some related models.
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I. INTRODUCTION

Percolation has been widely studied as a relatively simple
model of phase transitions and critical phenomena having
many of the features of these phenomena in more complex
systemsf1g. The simplest percolation model is random bond-
diluted percolation, in which case one starts with a regular
lattice and then removes bonds, choosing them completely at
random. The diluted networks are characterized by the frac-
tion of bonds presentsbond concentrationd p. In the limit of
an infinite latticesthermodynamic limitd, for p above the per-
colation thresholdpc, an infinite percolating clustersa set of
mutually connected bondsd emerges, while belowpc only
finite clusters exist.

A diluted network can be made into a random resistor
network, if the bonds present are replaced with resistors all
having the same resistance. Then one can apply a potential
difference across the network and find the current, thus mea-
suring the electrical conductance of the network. One can
also introduce the effective conductivity as the conductivity
of a uniform material of the same size and shape as the
network having the same conductance. Below the percola-
tion threshold, the conductivity is zero, as the opposite sides
are not connected; asp grows and the threshold is crossed,
the conductivity starts growing from zero. A mean-fieldsor
effective mediumd theory sMFTd exists for conductivityf2g,
which predicts that this growth occurs linearly as a function
of p−pc, with pc=2/z, wherez is the coordination number of
the undiluted lattice. This works well far away frompc; in
fact, the predicted slope is always correct atp=1 f3g.

Close topc, however, the conductivity dependence is gen-
erally nonlinear, with the critical exponent depending on the
dimensionalityfe.g.,.1.30 in two dimensionss2Dd f1gg, but
independent of the lattice typese.g., square, triangular, etc.,
in 2Dd. There are very few cases where the MFT for some
quantity is an exact solution. Above the upper critical dimen-
sion for a given universality class, the critical exponents are

the same as in the MFTf4g salthough the details of the de-
pendence may be differentd. Also, mean-field or mean-field-
like behavior is seen in systems with long-range correlations,
such as spin systems, in which all pairs of spins interact
equally, irrespective of how far apart they aref5g, or systems
on rather “pathological” Bethe latticesf6g. In these ex-
amples, switching to mean-field behavior requires drastic
changes, such as going to higher dimensionality or introduc-
ing rather unphysical long-range interactions. In the present
paper we show that even fairly weak geometric correlations
can lead to mean-field behavior for the conductivity in ran-
dom media.

II. THE MODEL

Consider the following model of a correlated network.
First introduce the concept of aspanning tree, which is a
network that has no loopssi.e., there is never more than one
path connecting any two sitesd and in which all sites are
connected. In other words, in a spanning tree exactly one
path connects any pair of sites. Suppose we have a set of all
possible spanning trees on a given lattice and choose one of
them at random. Such a tree is called a uniform spanning tree
sUSTd reflecting the fact that it is chosen with a probability
uniform among all trees. It is clear that such a tree is a
network with long-range correlations, as whether or not a
certain bond closes a loop can depend on the presence of
other bonds infinitely far away from it. The conductivities of
trees are zero in the thermodynamic limit, as with no loops
there are very few connections between opposite boundaries.
In fact, conductivity can be zero even for finite samples, in
the case ofperiodic boundary conditionssPBCsd. PBCs are
introduced by considering opposite sites at opposite bound-
aries of the lattice as identicalsthus effectively wrapping the
lattice into a “torus” of appropriate dimensionalityd when
building a spanning tree, but then requiring that the potential
differs by a specified constant at opposite sites in one direc-
tion and is identical in other directionssfor a 2D lattice,
imagine an ordinary torus in 3D with a variable magnetic
flux through it with a constant rate of changed. Then for
conductance one needs the presence of loops around the
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“torus” in the direction of potential change; but there are no
loops whatsoever in a tree, and thus the conductance is in-
deed zero even in finite samples. This geometry is conve-
nient for numerical simulations, as described below. A differ-
ent setup, the source-sink geometry, is more convenient for
theoretical analysis that we present later in this paper. In this
case, we have open boundary conditions, but put two addi-
tional sites, asourceand asink, at the opposite boundaries
sFig. 1d, allow connections between these sites and the adja-
cent boundary, and measure the conductance between the
source and the sink; in this case there is just one connection
and the conductivity is again zero in the thermodynamic
limit.

Our model consists in starting from a UST and adding
bonds, choosing their places at random among those where
they are missing. The bonds present represent unit resis-
tances. As bonds are added, the conductivity starts to grow
and it is the dependence of the conductivity on the number of
placed bondssor on the bond concentrationpd that we are
going to study. We will call this model the addition to the
UST sAUSTd model in what follows.

Consider a tree spanning a lattice ofN sites. When a tree
is being built, every new bond must connect two clusters,
joining them together into one clustersnew bonds cannot
join sites already in the same cluster, or else they would
close a loopd; thus each bond decreases the number of clus-
ters by 1, and given that there areN clusters in an empty
network with no bonds and just one cluster in the spanning
tree, the number of bonds isN−1. This corresponds to the
bond concentrationp=2/z sas a reminder,z is the coordina-
tion number of the full latticed. If we make an assumption
sthat will actually follow from the proof belowd that the con-
ductivity starts growing from zero immediately as the bonds
start to be added to the tree, the valuep=2/z should be
regarded as the analog of the percolation threshold. We note
that it coincides with the mean-field valuef2g.

III. NUMERICAL RESULTS

First, the study of conductivity in our AUST model can be
done numerically. We did this by solving the system of
Kirchhoff equations directly by the conjugate gradient

method f7g. We preferred this to somewhat faster special
methods, such as those using the star-triangle transformation
f8g, as we could treat periodic boundary conditions. As we
mentioned, in this case the conductance of a tree is exactly
zero even for a finite sample, so the finite size effects are
expected to be less severe; of course, we expect that in the
thermodynamic limit the results do not depend on the bound-
ary conditions and in particular, are the same for PBCs and
in the source-sink geometry. The starting uniform trees are
built using an algorithm due to Broderf9g. In the Broder
algorithm, a random walk on the network is started at an
arbitrary site and continued until all sites are visited; every
time a new site is reached, the last bond along which the
walk reached that site is recorded; the set of all such bonds
sthere areN−1 of them, since one bond is recorded for each
site but the starting oned forms a tree and it can be provedf9g
that every possible tree will occur with equal probability. In
Fig. 2 we compare the results for the usual randomly diluted
lattices with those for our AUST model. In Fig. 2sad, we
present the results for the square lattice. In this case, the
comparison is facilitated by the percolating thresholds being
the same in the two models; indeed, for the randomly diluted

FIG. 1. A tree built on the 20320 square lattice with a source
ssd and a sinkss8d added. The missing bonds are shown with thin
lines, the present bondssforming the treed with thicker lines, includ-
ing the only path froms to s8 shown with the thickest lines. The
missing bonds are then added at random, as described in the text.

FIG. 2. Conductivitys as a function of bond concentrationp for
random bond-diluted networkssfilled circlesd and our correlated
AUST modelsopen circlesd on the square latticesad averaged over
25 realizations on the 5003500 lattice and on the simple cubic
lattice sbd averaged over 25 realizations on the 50350350 lattice.
The solid lines are the respective effective medium linear results. In
all cases,s=1 at p=1. For AUST results, a different starting span-
ning tree generated at random was used for each realization.
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square lattice, the threshold is known to occur at the mean-
field valuespc=0.5 in this cased; as we mentioned, this is the
case for the AUST model, regardless of the lattice. In Fig.
2sbd, we do the same comparison for the simple cubic lattice.
In this case the thresholds do not coincide: the mean-field
sand AUSTd value is 1/3, the randomly diluted network
value is 0.2488f1g.

The striking feature of the results in Fig. 2 is that while in
the random dilution case the deviation from linearity is seen
very well close to the percolation threshold, the dependence
for the AUST model seems to be linear. Note that this is the
case in both 2DfFig. 2sadg and 3DfFig. 2sbdg. Of course, the
question is if this dependence is indeed exactly linear or just
very close to linear, and we are going to show now that this
linearity is exact.

IV. PROOF OF LINEARITY OF CONDUCTIVITY

We will use a result due to Kirchhofff10,11g that ex-
presses the resistance between two points of a resistor net-
work in terms of sums over trees built on the network. In our
particular case, when all resistances are equal to unity, this
result reduces to a tree-counting procedure. First, find the
total numberNT of distinct spanning trees that can be built
on the networkfFig. 3sbdg. Second, find the total numberNT8
of possible distinct graphs consisting of two trees, such that
the source is in one tree and the sink in the otherfFig. 3scdg.
Following Bollobás f12g, we will refer to such two-tree
graphs asthickets. Then the conductanceS is the ratio of
these two numbers:

S=
NT

NT8
. s1d

This result is based on the following fact. Suppose there is a
spanning tree on the network and one drives a unit current
between the sources and the sinks8 sthe current will, of
course, be confined to the “backbone” of the tree, which is
just a single path, as illustrated in Fig. 1d. Now, if one repeats
this for all possible spanning trees and forms the superposi-
tion of the currents, then the resulting current distribution
will satisfy all Kirchhoff laws for the original network with
no other sources and sinks buts and s8. That the sum of
currents at each node is zero is obvious, since this is so for
each separate tree and thus also holds for the superposition;
checking that the voltage drop around any loop is zero is a
bit trickier, but can be done by expressing the current in each
loop in terms of certain thickets and then looking at the
contribution of each thicketsfor details, see Ref.f12gd. Once
this fact is established, one can consider a network consisting
of the original one plus an additional link of unit resistance
betweens ands8; the conductance of the original network is
then the ratio of the current through the original network and
the current through the added linksthe latter being equal to
the voltage betweens ands8d.

For our proof, it is convenient to visualize the following
diagramsFig. 4d. First, imagine we have a set of all spanning
trees that can be built on the full lattice. This set is denoted
schematically as the left column of dots in Fig. 4. Now con-

sider a set of all networks that can be obtained from these
trees by adding exactlyB bondssthe middle column of dots
in Fig. 4d. From each tree we can obtain

Nn = SB0

B
D s2d

different networks, whereB0 is the total number of bonds
missing in the tree compared to the full latticesnote thatB0 is
the same for all trees, as the number of bonds in any tree is
N−1d. This establishes connections between the set of trees
and the set of networks, so that every tree is connected toNn

FIG. 3. sColord An illustration of the relation between networks,
trees, and thickets.sad shows a network spanning all sites of the
square latticessuch as would be obtained by adding bonds to a
spanning treed. sbd illustrates a treesredd built on the network insad,
or, conversely, the network insad can be obtained by adding bonds
to the tree insbd. Finally, scd shows a thicket consisting of two trees
sblue and greend on the network insad. Note that the particular
thicket inscd can be obtained by removing a single bondfred inscdg
from the backbone of the tree insbd.
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networks that can be obtained from it. These connections are
shown schematically in Fig. 4 as the links between the dots
in the left column and the dots in the middle column. The
total number of connections is

C = NnTf , s3d

whereTf is the total number of possible spanning trees on
the full lattice. Conversely, these same connections specify
which trees can be built on each networksi.e., are subgraphs
of the networkd.

Similarly, we can consider the set of all possible thickets
on the full lattice sdenoted by the right column of dotsd.
Every thicket hasN−2 bonds, so there areB0+1 empty
bonds. If we add a set ofB+1 bonds to a thicket, we will
almost certainly obtain one of the networks under consider-
ation sthere is a possibility that none of these bonds connect
the two trees of the thicket together, but this is negligibly
rare in the thermodynamic limitd. Then the number of net-
works that can be obtained from each thicket by bond inser-
tion is

Nn8 = SB0 + 1

B + 1
D s4d

and the total number of connections is

C8 = Nn8Tf8, s5d

whereTf8 is the total number of possible thickets on the full
lattice. These connections are also shown in the diagram.
Again, they also specify which thickets can be built on each
network.

A plausible assumption that we make is that conductance
is self-averaging, i.e., in the thermodynamic limit the con-
ductance is the same for all but a negligible fraction of real-
izations. We verified this assumption numerically, by check-
ing that the variance in the conductance for different
realizations at the same bond concentration decreases as the
network size increases. Then for almost every network the
ratio of the number of trees connected to it to the number of
thickets connected to it is the samefas this ratio equals the
conductivity, according to Eq.s1dg. The anomalous networks,
for which this is not the case, have a negligible probability of
occurring. The probability to obtain a particular network is
proportional to the number of connections between this net-
work and various trees; thus anomalous networks have a
negligible amount of connections with the trees; this is also
true for their connections with the thickets, as the ratio of the
number of connections with the trees to that with the thickets
for every network is its conductance, and the conductivity is
expected to beOs1d for all but an exponentially small frac-
tion of networks. Then all connections of the anomalous net-
works can be neglected in the total count of connections and
the ratio of the total number of connections between the left
and the middle columns to that between the right and the
middle columns is again the conductance. On the other hand,
this ratio is

S= C/C8 =
NnTf

Nn8Tf8
=

TfsB + 1d
Tf8sB0 + 1d

~ B for B @ 1, s6d

as B0, Tf, and Tf8 do not depend onB, and the proof is
complete.

Some comments are in order. First, we have not made any
assumptions about the underlying lattice, so that the result is
independent of the lattice type and dimensionality, although
there may be problems with the assumptions that we made in
pathological cases, when connections between sites infinitely
far apart are possible. Second, we had in mind a situation
with the source and the sink at the opposite sides of the
lattice, but have not used this fact anywhere. We did make an
assumption that conductance is realization independent and
this is only true when the source and the sink are infinitely
far apart.

V. RELATED MODELS

Besides UST, it is possible to produce variousbiaseddis-
tributions of spanning trees. One much-studied example is
the minimal spanning treesMSTd f13g, which is, given a
lattice with weights assigned to bonds, the tree with minimal
total weight. Another example of a spanning tree is the
shortest-path treesSPTd f13g, which, again given the weights
of bonds, is the set of paths with minimum weight between a
particular site and all other sites. Note that our proof does not
apply to these biased cases, as atypical networks with

FIG. 4. A schematic diagram showing relations between trees
and networks and between thickets and networks. The left column
of dots denotes the set of all possible trees on the full lattice; the
right column is the set of all thickets; the middle column is the set
of all spanning networks with a certain number of bonds. The con-
nections in the left partsbetween trees and networksd show what
networks can be built by adding bonds to a tree, or, conversely,
what trees are subgraphs of a given network. The connections in the
right part show similar relations between thickets and networks.
The ratio of the numbers of connections in the left part and in the
right part is proportional to the conductivity of a network with a
certain number of bonds in the thermodynamic limit, as discussed
in the text.
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anomalous conductivity may be strongly favored over typical
ones. Indeed, the trees themselves are atypical: the geom-
etries of the MST and SPT are different from those of the
typical UST; this can be characterized, e.g., by the fractal
dimension of paths on the trees, which in 2D is 5/4 for UST
f14g, .1.22 for MSTf15g, and 1 for SPT for moderate dis-
order in weightsf16g. Thus branches of a SPT are much
more straight than those of a UST. Interestingly, though, it
turns out that the conductivity dependence is still surpris-
ingly close to linear even for the SPT, despite their being
geometrically very different from the UST. For example, for
the square lattice, atp=0.55 the conductivity of networks
obtained from the SPT is only about 3% above that of net-
works obtained from the UST. We also note that for the
MST, the deviations from linearity have never been reliably
detected either in 2D or in 3D. Thus it may be possible that
the linearity is exact for the MST, just as for the UST. The
reasons for this linearity or near-linearity in the MST and
SPT are not clear at the moment.

At the same time it is easy to produce spanning networks,
for which their conductivity dependence is strongly nonlin-
ear. Trivial examples can be obtained by adding bonds to
anisotropic trees, in which most branches are directed, say,
perpendicular to the applied potential difference. More inter-
esting is the followingisotropic casescalled the restricted
dilution model in what followsd. Start from the full lattice
and start picking bonds at random, but removing them only if
this removal does not separate a piece of the network from
the rest. In this way, we obtain spanning networks, with no
finite clusters, just as in our AUST model. Obviously, this
dilution procedure can be continued until a spanning tree is
obtained. Despite certain similarity with the AUST model,
the conductivity dependence now is not mean-field-like. In-
deed, it can be shown that the conductivity becomes zero
beforereaching the spanning tree limit, i.e., at a higher bond
concentrationsFig. 5d. Thus, an interesting example of an
intermediate phaseis formed: in a certain range of bond
concentrations, the infinite cluster exists, but its structure is
such that the conductance is very low and vanishes in the
thermodynamic limit.

To see this, suppose we create a random list of bonds
intended for removal. In the case of random bond dilution,
all of these bonds are removed in the order given by the list.
In the restricted dilution case, some of these bonds will be
rejected and not removed. Note that rejected bonds do not
belong to loops and so their removal would not change the
configuration of loops and thus would not change conductiv-
ity sat least not in the case of PBCsd. Then, there is a corre-
spondence between sequences of networks obtained by ran-
dom dilution and those obtained by restricted dilution using
the same list of bonds whose removal is attempted. If the
random dilution procedure proceeds below the percolation
threshold, the conductivity of obtained networks becomes

zero, so the conductivity of the corresponding networks ob-
tained by restricted dilution is also zero, even though by
construction these networks still span all sites.

VI. OUTLOOK

While this paper provides a formal proof of linearity of
conductivity in the AUST model, an obvious question is if
there is a more straightforward physical explanation. Of
course, the network is more uniform in a sense compared to
a randomly diluted one, as the percolating cluster spans all
sites and there are no “holes” in it in the form of isolated
finite clusters. Yet, as the example of the restricted dilution
model shows, this by itself is not enough to get even close
enough to linearity. There seems to be nothing in the model
itself that would suggest that it should exhibit mean-field
behavior, so the question remains open at present.

As a final note, a model analogous to the AUST, but using
MSTs as initial trees to which bonds are added, has arisen as
the connectivity analog of our modelf17g of self-
organization in rigidity percolation, as explained in Ref.
f18g. In that case, the analog of conductivity is the elastic
moduli of the network of elastic springs, and it is worth
noting that the deviations from linearity in the critical region
are significantf19g, whereas the effective medium theory
f20g again predicts linearity. Thus mean-field behavior is
unique to ordinarysconnectivityd percolation.
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FIG. 5. Conductivity as a function of bond concentration for the
restricted dilution model described in the textscirclesd. These re-
sults are averaged over 25 realizations on the 1003100 square
lattice. The solid line is the mean-field linear result.
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